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Abstract— Traditionally seafloor surveys have been 
conducted with research vessels, divers or with an 
autonomous underwater vehicle (AUV) and are time 
consuming, expensive and high risk. In this paper we 
present an approach to merge sonar and monocular 
images to perform large scale mapping of shallow areas 
from an autonomous surface vessel (ASV), reducing the 
mission time, cost and risk. Our method uses multibeam 
sonar data to generate a mesh of the seafloor. Optical 
images are then blended and projected onto the mesh 
after a color correction process which increases contrast 
and overall image quality. In applicable scenarios, ASVs 
offer an alternative approach to AUVs for autonomous 
acoustic and optical site mapping. ASVs are typically less 
expensive than AUVs and often offer easier deployment 
and recovery logistics. Also, the mechanical requirements 
are less demanding because they do not have to withstand 
increased atmospheric water pressure at depth. 

I. INTRODUCTION 

Seafloor bathymetry maps are the first requirement 
for multiple marine and ocean science projects, includ-
ing fisheries management [1], sediment process mod-
eling, [2] and coral reef monitoring [3]. Traditionally 
these surveys have been performed by large research 
vessels equipped with multibeam sonar systems and 
sidescan sonars as well as towed sonar arrays. In 
the case of underwater archaeology, the application 
presented in this paper, surveys have been traditionally 
performed by divers equipped with measuring tapes, 
guidelines, and handheld cameras [4]. As this is a 
very labor intensive task new technological means 
are being developed. Recently, methods have been 
proposed where divers utilize a stereoscopic camera 
system equipped with global positioning system (GPS) 
and an inertial measurement unit (IMU) [5]. How-
ever, this still requires the use of multiple divers 
and guidelines and is time consuming. To produce 
complete uniform coverage of a site is challenging as 
human divers often lack the visibility and overview 
knowledge to map an area precisely. In contrast, 
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autonomous underwater vehicles (AUVs) have been 
used extensively to automate the process of underwater 
data collection: [6] presents a map of the ”Le Lune” 
shipwreck and [7] and [8] display an overview of the 
use of AUV for Benthos monitoring, where the authors 
analyze the use of AUV technology for underwater 
archeology in the Gulf of Mexico. Operating AUVs 
in very shallow water is a major challenge as there 
are difficulties in bottom following due to vehicle draft 
and minimum depth requirements. Additionally, AUVs 
are very expensive assets, require expert operators, and 
have many catastrophic failure modes. Here we propose 
an alternative for shallow water mapping using an 
autonomous surface vessel (ASV). They offer a simple 
and effective way to explore a large shallow area using 
both optical and acoustic sensors to map the benthos. 
One advantage in using an ASV to perform mapping 
is the constant availability of GPS which improves 
the simplicity and accuracy of platform localization. 
Deployment of an ASV is simpler, less risky, and less 
expensive when compared to an AUV. 
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Fig. 1. Flowchart for proposed Sonar and Image processing 
producing full 3D photo-mosaic from an ASV 

This paper describes a method for the use of 
an ASV for shallow water optical and acoustic 3D 
mapping. Section II describes the platform used, the 
sensor payload and general configuration. Section III 
presents the methodology used for the survey and 
post-processing, describing both the sonar and camera 
processing pipelines in detail. Section IV presents the 
experimental results obtained during a field deployment 
in April 2015 in Port Royal, Jamaica. Conclusions and 
future work are presented in Section V. 
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Mass 29 kg 
Max Payload Mass 10 kg 
Size 1.35 x 0.98 x 0.32 m 
Max. Speed 3.3 kn 
Propulsion System Differential Waterjet Drive 
Autonomy 1 - 2 hrs 
Batteries NiMH 14.4V 20Ah 
Onboard Processing Intel Atom @ 1.8Ghz, 4Gb RAM 
GPS receiver Ublox GPS 
Attitude and Heading CHRobotics UM6 IMU 
Sonar Delta-T Multibeam 
Communications Wifi and Radio 
Cameras 2 Greypoint Chamaleon 

TABLE I 
KINGFISHER ASV MAIN CHARACTERISTICS 

II. HARDWARE PLATFORM 

1) Kingfisher ASV: The ASV, from Clearpath 
Robotics, is a 1.3m long catamaran which has 
a battery life of approximately 2 hours. The 
catamaran configuration makes it a very stable 
vehicle, and offers ample space between both hulls 
to mount the sensor payload. The Kingfisher is 
equipped with a UBlox GPS sensor, as well as a 
low cost IMU whose measurements are integrated 
into a standard extended Kalman filter (EKF) to 
determine the vehicle’s pose. A full list of the 
sensor payload appears in Table I. The navigation 
and control is performed with the Robot Operating 
System (ROS). 

2) Multibeam Sonar: The vehicle features an Ima-
genex Delta T multibeam sonar that operates at 
260 kHz. It has a swath width of 120◦ , 480 range 
bins and a sampling frequency of up to 20 Hz. 

3) Camera System: The camera system is a custom 
design with two downward facing 1MP Point 
Grey Chameleon cameras capturing images at 
7.5Hz. Image resolution is 1296 x 964 pixels. 
The cameras are mounted vertically so they face 
the seafloor and they are positioned close to the 
boat’s center of rotation to reduce the disturbances 
induced by wave motion. 

III. METHODOLOGY 

Our proposed solution integrates the measurements 
collected by the multibeam sonar and RGB camera. We 
use the 3D structure derived from the multibeam and 
fuse it with the camera data to produce a textured 3D 
model for visualization. A flow chart of the process 
appears in Figure 1. The following section details the 
steps that are performed: 

A. Localization 

An EKF tracks the position estimate on board the 
vehicle, fusing IMU and GPS. The availability of GPS 
and the lack of human-made structures in the vicinity 
of the vehicle that might interfere with the GPS signal 
greatly improve the localization accuracy. 

B. Sonar data processing 

The globally aligned sonar scans are used to estimate 
a refined roll offset relative to the vehicle frame. This 
is done by recording two sufficiently large straight 
segments in opposed directions over an approximately 
flat seabed. From that data, roll and pitch offsets are 
computed by obtaining the best fitting planes to each of 
the directions and calculating the relative slope between 
the planes. After applying roll and pitch corrections to 
the data, the resulting sonar pings are median filtered 
to eliminate outliers. A georeferenced bathymetric grid 
at a resolution of 15cm is then created from the filtered 
sonar pings by 2D, thin plate spline interpolation. The 
last step in the sonar processing pipeline is to produce a 
triangulated irregular network (TIN) through Delaunay 
triangulation of the obtained interpolated grid. 

C. Image color correction 

Images are color corrected to minimize the effect 
of the water column and lighting pattern using the 
Greyworld approach [9] to normalize the intensities. 
This approach treats each pixel color channel inde-
pendently and constructs an approximate model of the 
lighting pattern by computing the mean and standard 
deviation of all channels over all the images captured. 
A gain and offset is then applied to each channel 
to increase the distribution contrast. Figures 4(a) and 
4(b) show one image before and after applying this 
process. Another challenge is presented by the different 
wavelength attenuation of light in water. If the images 
to be processed have significant depth differences, the 
illumination correction computed violates the assump-
tion of a uniform path length of light. Without adjusting 
for depth the single correction applied overamplifies 
the red channel in the shallow images and the blue 
channel in the deep images respectively. Figure 4(c) 
shows an image taken in a shallow part of the data set 
after applying the correction. To compensate for this we 
incorporate the depth information from the multibeam 
sonar and segment the images by depth into bins. The 
range of each segment depends on the total depth 
variation in the data set. After segmenting the images, 
the color correction algorithm is applied to each group 
independently. Figure 5 illustrates the depth correction 
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(a) Kingfisher ASV (b) Sensor Payload 

Fig. 2. (a) shows the Kingfisher ASV operating, all systems are labeled. (b) shows the sensor payload. Lightweight aluminum beams 
were used to form a rigid support to attach both the multibeam sonar and the camera vision system to the ASV. The payload is shown 
upside-down in the figure. 

(a) Gridded Sonar Data (b) Final textured mesh 

Fig. 3. (a) shows the bathymetry map from the site in Port Royal after being median filtered and gridded. (b) shows the textured, large 
scale 3D reconstruction of the site. The inset on the top right shows a detailed view of bricks corresponding to a road, while the bottom 
right inset shows the remains of a building wall. The large area map allows for globally geo-referencing these areas of the site. 

steps. The results of the depth segmented correction 
on the same image as in Figure 4(c) and can be seen 
in Figure 4(d) after performing this segmentation and 
correction. 

D. Reprojection 

The corrected monocular images are then projected 
and blended onto the mesh using the method pro-
posed by Johnson-Roberson et al. [10], [9]. Using a 
calibrated camera and the pose of the vehicle the 3D 
points from sonar mesh can be back-projected into all 
camera views in which they are visible. The process 
of determining visibility is accelerated using a KD-
Tree [11] making the calculation of image coordinates 
efficient on large scale models which are hundreds 
of meters squared. The four closest reprojections are 
selected to enable a multi-scale band-limited blending 

of overlapping images. The initial parametrization is 
remapped to optimize resolution for the 3D structure in 
a more hardware efficient square 2D texture space. The 
resulting mesh parametrization is then segmented to be 
efficiently packed and stored in a large Virtual texturing 
pyramid for efficient rendering [12]. The actual creation 
of the texture images is handled by an out-of-core soft-
ware renderer detailed in Johnson-Roberson et al. [10]. 
The sonar derived structure is down-sampled using 
a Quadric-based method [13] and stored to produce 
a static level of detail (LOD) hierarchy to allow for 
the real-time visualization of the model on commodity 
desktop hardware. 
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Alt: 0.5Alt: 0.5Alt: 0.5

Alt: 1.5Alt: 1.5Alt: 1.5

Alt: 2.5Alt: 2.5Alt: 2.5

(a) Original image as captured by the camera (b) Corrected image 

(c) Altitude agnostic color correction (d) Altitude aware color correction 

Fig. 4. (a) shows the original image as captured by the camera. (b) shows the same image after applying the color correction algorithm. 
(c) shows the result of the color correction algorithm if applied to the whole image data set. On the contrary, (d) depicts the same image 
if images are segmented by depth before processing and then color corrected in batches. 

Alt: 0.5 

Alt: 1.5 

Alt: 2.5 

Raw Images Altitude Cluster Mean and Variance Images for each cluster Color corrected images 

Fig. 5. In this figure the general flow for the attitude aware color correction algorithm is shown: All captured images are clustered 
into depth bins using the associated sonar measurements. For each cluster, the greyworld assumption is applied independently, computing 
cluster image mean and variance. 
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Fig. 6. Map showing the location of the site with inlays showing a higher level of detail of the region of interest. The final mapped area 
is shown as the red rectangle. 

IV. EXPERIMENTS 

A. Port Royal 

The first deployment of the developed ASV system 
was April 2015 to map the underwater remains of the 
city of Port Royal, Jamaica. The exact location of the 
site mapped can be seen in Figure 6. This site was 
ideal for such a system due to the shallow depth of the 
area, with most ruins located between 1 and 3 meters. 
Archaeologically it is of great importance. The location 
of Port Royal, in the middle of the Caribbean Sea, and 
its control over the entrance to Kingston Bay, one of 
the biggest natural harbors of the region, made it a 
strategic point of interest for the Europeans, and the 
city quickly became the center of English trade in the 
New World. At the same time, it served as port for 
pirates praying on the Spanish treasure fleets, which 
gave it its nickname of ‘Wickedest City on Earth’. On 
June 7th 1692, two thirds of the city disappeared in 
the waters of Kingston Bay due to an earthquake that 
had an estimated intensity of 7.5 on the Richter scale. 
2000 people died during the earthquake, and 3000 more 
perished in the following weeks as a consequence of 
injuries and diseases. With some excavations beginning 
in the 1960s and 1980s, intact building foundations and 
streets are perfectly visible in the shallow waters. The 
site covers an area of approximately 6 acres starting 
from the coastline and extending about 100m into 
Kingston Bay. 

B. ASV operation 

The size of the site makes it extremely difficult 
to map using conventional means. The draft of most 
manned vessels would prevent their operation on the 
site. The small ASV enabled broad coverage of a large 
area inaccessible by other means. The data presented 
in Figure 3 displays the results of processing approxi-
mately one and a half hours of sensor logs where the 
vehicle covered more than 2 linear km. In the subfigure 
on the upper right we can observe bricks from a former 
street and the remains of a wall appear in the subfigure 
on the lower right. Problems with the autonomous 
navigation software made it necessary to teleoperate 
the ASV. The disadvantages of doing so can be seen 
in Figure 7, where the trajectory followed by the ASV 
is shown. A more homogeneous and regular surveying 
pattern would further increase the quality of the final 
3D reconstruction as shown in Figure 3. The large 
area metric 3D photo-mosaic will enable underwater 
archaeologists to develop architectural maps of the city 
and to plan future dives and excavations. 

V. CONCLUSIONS AND FUTURE WORK 

In this paper we have demonstrated that it is possible 
to perform surveys and map large areas of shallow 
seabed with the help of sonar and a monocular camera. 
The use of a small ASV reduces the time needed to 
perform such a survey, as well as the cost, and pro-
duces accurate, globally referenced three dimensional 
reconstructions of the seafloor. 
Future work will focus on improving the quality of 
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Fig. 7. Map showing the trajectory followed by the Kingfisher 
ASV. The resulting reconstruction can be seen in Figure 3 

the image enhancement process as well as online pro-
cessing of the images on board the ASV. Other areas 
of interest are to improve the autonomous navigation 
capabilities to ensure dense coverage of the area by 
integrating the sonar depth information to compute the 
images field of view as the survey is performed. 
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